122 research outputs found

    Freight distribution performance indicators for service quality planning in large transportation networks

    Get PDF
    This paper studies the use of performance indicators in routing problems to estimate how transportation cost is affected by the quality of service offered. The quality of service is assumed to be directly dependent on the size of the time windows. Smaller time windows mean better service. Three performance indicators are introduced. These indicators are calculated directly from the data without the need of a solution method. The introduced indicators are based mainly on a "request compatibility", which describes whether two visits can be scheduled consecutively in a route. Other two indicators are introduced, which get their values from a greedy constructive heuristic. After introducing the indicators, the correlation between indicators and transportation cost is examined. It is concluded that the indicators give a good first estimation on the transportation cost incurred when providing a certain quality of service. These indicators can be calculated easily in one of the first planning steps without the need of a sophisticated solution tool. The contribution of the paper is the introduction of a simple set of performance indicators that can be used to estimate the transportation cost of a routing problem with time window

    Data analytics and optimization for assessing a ride sharing system

    Get PDF
    Ride-sharing schemes attempt to reduce road traffic by matching prospective passengers to drivers with spare seats in their cars. To be successful, such schemes require a critical mass of drivers and passengers. In current deployed implementations, the possible matches are based on heuristics, rather than real route times or distances. In some cases, the heuristics propose infeasible matches; in others, feasible matches are omitted. Poor ride matching is likely to deter participants from using the system. We develop a constraint-based model for acceptable ride matches which incorporates route plans and time windows. Through data analytics on a history of advertised schedules and agreed shared trips, we infer parameters for this model that account for 90% of agreed trips. By applying the inferred model to the advertised schedules, we demonstrate that there is an imbalance between riders and passengers. We assess the potential benefits of persuading existing drivers to switch to becoming passengers if appropriate matches can be found, by solving the inferred model with and without switching. We demonstrate that flexible participation has the potential to reduce the number of unmatched participants by up to 80%

    Cargo scheduling decision support for offshore oil and gas production: a case study

    Get PDF
    Woodside Energy Ltd (Woodside), Australia’s largest independent oil and gas company, operates multiple oil and gas facilities off the coast of Western Australia. These facilities require regular cargo shipments from supply vessels based in Karratha, Western Australia. In this paper, we describe a decision support model for scheduling the cargo shipments to minimize travel cost and trip duration, subject to various operational restrictions including vessel capacities, cargo demands at the facilities, time windows at the facilities, and base opening times. The model is a type of non-standard vehicle routing problem involving multiple supply vessels—a primary supply vessel that visits every facility during a round trip taking at most 1 week, and other supply vessels that are used on an ad hoc basis when the primary vessel cannot meet all cargo demands. We validate the model via test simulations using real data provided by Woodside

    Decomposition techniques with mixed integer programming and heuristics for home healthcare planning

    Get PDF
    We tackle home healthcare planning scenarios in the UK using decomposition methods that incorporate mixed integer programming solvers and heuristics. Home healthcare planning is a difficult problem that integrates aspects from scheduling and routing. Solving real-world size instances of these problems still presents a significant challenge to modern exact optimization solvers. Nevertheless, we propose decomposition techniques to harness the power of such solvers while still offering a practical approach to produce high-quality solutions to real-world problem instances. We first decompose the problem into several smaller sub-problems. Next, mixed integer programming and/or heuristics are used to tackle the sub-problems. Finally, the sub-problem solutions are combined into a single valid solution for the whole problem. The different decomposition methods differ in the way in which subproblems are generated and the way in which conflicting assignments are tackled (i.e. avoided or repaired). We present the results obtained by the proposed decomposition methods and compare them to solutions obtained with other methods. In addition, we conduct a study that reveals how the different steps in the proposed method contribute to those results. The main contribution of this paper is a better understanding of effective ways to combine mixed integer programming within effective decomposition methods to solve real-world instances of home healthcare planning problems in practical computation time

    Workforce scheduling and routing problems: literature survey and computational study

    Get PDF
    In the context of workforce scheduling, there are many scenarios in which personnel must carry out tasks at different locations hence requiring some form of transportation. Examples of these type of scenarios include nurses visiting patients at home, technicians carrying out repairs at customers’ locations and security guards performing rounds at different premises, etc. We refer to these scenarios as workforce scheduling and routing problems (WSRP) as they usually involve the scheduling of personnel combined with some form of routing in order to ensure that employees arrive on time at the locations where tasks need to be performed. The first part of this paper presents a survey which attempts to identify the common features of WSRP scenarios and the solution methods applied when tackling these problems. The second part of the paper presents a study on the computational difficulty of solving these type of problems. For this, five data sets are gathered from the literature and some adaptations are made in order to incorporate the key features that our survey identifies as commonly arising in WSRP scenarios. The computational study provides an insight into the structure of the adapted test instances, an insight into the effect that problem features have when solving the instances using mathematical programming, and some benchmark computation times using the Gurobi solver running on a standard personal computer

    A simulation modelling toolkit for organising outpatient dialysis services during the COVID-19 pandemic

    Get PDF
    This study presents two simulation modelling tools to support the organisation of networks of dialysis services during the COVID-19 pandemic. These tools were developed to support renal services in the South of England (the Wessex region caring for 650 dialysis patients), but are applicable elsewhere. A discrete-event simulation was used to model a worst case spread of COVID-19, to stress-test plans for dialysis provision throughout the COVID-19 outbreak. We investigated the ability of the system to manage the mix of COVID-19 positive and negative patients, the likely effects on patients, outpatient workloads across all units, and inpatient workload at the centralised COVID-positive inpatient unit. A second Monte-Carlo vehicle routing model estimated the feasibility of patient transport plans. If current outpatient capacity is maintained there is sufficient capacity in the South of England to keep COVID-19 negative/recovered and positive patients in separate sessions, but rapid reallocation of patients may be needed. Outpatient COVID-19 cases will spillover to a secondary site while other sites will experience a reduction in workload. The primary site chosen to manage infected patients will experience a significant increase in outpatients and inpatients. At the peak of infection, it is predicted there will be up to 140 COVID-19 positive patients with 40 to 90 of these as inpatients, likely breaching current inpatient capacity. Patient transport services will also come under considerable pressure. If patient transport operates on a policy of one positive patient at a time, and two-way transport is needed, a likely scenario estimates 80 ambulance drive time hours per day (not including fixed drop-off and ambulance cleaning times). Relaxing policies on individual patient transport to 2-4 patients per trip can save 40-60% of drive time. In mixed urban/rural geographies steps may need to be taken to temporarily accommodate renal COVID-19 positive patients closer to treatment facilities.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.This article presents independent research funded by the National Institute for Health Research (NIHR) Applied Research Collaboration (ARC) South West Peninsula (MA, SL). The views expressed in this publication are those of the author(s) and not necessarily those of the National Health Service, the NIHR or the Department of Health and Social Care. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    • …
    corecore